We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work compares dose-volume constraints (DVCs) and tumour control predictions based on the average intensity projection (AVIP) to those on each phase of the four-dimensional computed tomography.
Materials and methods:
In this prospective study plans generated on an AVIP for nine patients with locally advanced non-small-cell lung cancer were recalculated on each phase. Dose-volume histogram (DVH) metrics extracted and tumour control probabilities (TCP) were calculated. These were evaluated by Bland–Altman analysis and Pearson Correlation.
Results:
The largest difference between clinical target volume (CTV) on the individual phases and the internal CTV (iCTV) on the AVIP was seen for the smallest volume. For the planning target volume, the mean of each metric across all phases is well represented by the AVIP value. For most patients, TCPs from individual phases are representative of that on the AVIP. Organ at risk metrics from the AVIP are similar to those seen across all phases.
Findings:
Utilising traditional DVH metrics on an AVIP is generally valid, however, additional investigation may be required for small target volumes in combination with large motion as the differences between the values on the AVIP and any given phase may be significant.
To establish whether the use of a passive or active technique of planning target volume (PTV) definition and treatment methods for non-small cell lung cancer (NSCLC) deliver the most effective results. This literature review assesses the advantages and disadvantages in recent studies of each, while assessing the validity of the two approaches for planning and treatment.
Methods
A systematic review of literature focusing on the planning and treatment of radiation therapy to NSCLC tumours. Different approaches which have been published in recent articles are subjected to critical appraisal in order to determine their relative efficacy.
Results
Free-breathing (FB) is the optimal method to perform planning scans for patients and departments, as it involves no significant increase in cost, workload or education. Maximum intensity projection (MIP) is the fastest form of delineation, however it is noted to be less accurate than the ten-phase overlap approach for computed tomography (CT). Although gating has proven to reduce margins and facilitate sparing of organs at risk, treatment times can be longer and planning time can be as much as 15 times higher for intensity modulated radiation therapy (IMRT). This raises issues with patient comfort and stabilisation, impacting on the chance of geometric miss. Stereotactic treatments can take up to 3 hours to treat, along with increases in planning and treatment, as well as the additional hardware, software and training required.
Conclusion
Four-dimensional computed tomography (4DCT) is superior to 3DCT, with the passive FB approach for PTV delineation and treatment optimal. Departments should use a combination of MIP with visual confirmation ensuring coverage for stage 1 disease. Stages 2–3 should be delineated using ten-phases overlaid. Stereotactic and gated treatments for early stage disease should be used accordingly; FB-IMRT is optimal for latter stage disease.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.