We address the problem of optimal transport with a quadratic cost functional and a constraint on the flux through a constriction along the path. The constriction, conceptually represented by a toll station, limits the flow rate across. We provide a precise formulation which, in addition, is amenable to generalization in higher dimensions. We work out in detail the case of transport in one dimension by proving existence and uniqueness of solution. Under suitable regularity assumptions, we give an explicit construction of the transport plan. Generalization of flux constraints to higher dimensions and possible extensions of the theory are discussed.