The steady-state current–voltage response of ion-selective systems varies as the number of ion-selective components is varied. For the highly investigated unipolar system, including only one ion-selective component, it has been shown that above a supercritical voltage, an electroosmotic instability is triggered, leading to overlimiting currents. In contrast, the effects of this instability on the current–voltage response of the second most common system of a bipolar system, including two oppositely charged permselective regions, have yet to be reported. Using numerical simulations, we investigate the steady-state electrical response of bipolar systems as we vary the ratio of the charge within the two oppositely charged regions. The responses are divided into those with an internal symmetry related to the surface charge and those without. In contrast to the unipolar systems, bipolar systems with the internal symmetry do not exhibit overlimiting currents and their steady-state response is identical to the convectionless steady-state response. In contrast, the systems without the internal symmetry exhibit much more complicated behaviour. For positive voltages, they have overlimiting currents, while for negative voltages, they do not have overlimiting currents. Our findings contribute to a more profound understanding of the behaviour of the current–voltage response in bipolar systems.