This paper presents a novel cable-driven parallel robot with the aim of rehabilitating/exercising young and disabled children in drawing and writing tasks. The pyramidal topology was identified as providing the required three active translational Degrees of Freedom with a redundant set of five cables in a compact portable shape. In addition, this robot was designed with new features, as it is inexpensive, easy to control, easy to move to any place at home or school as it is fitting a home desk or classroom table. In this paper, we present the main steps for designing the proposed cable-driven pyramidal parallel robot. Specific attention is addressed to the design of the structure and the end effector as well as to establishing proper simulation models. Several simulations are proposed by implementing both kinematic and dynamic models to demonstrate the feasibility of multiple writing/drawing tasks. A specific user interface is proposed allowing both continuous and intermittent trajectories. A sliding mode control is implemented to achieve suitable tracking accuracy on a desired path. Finally, an experimental validation is successfully carried out by considering multiple trajectories for demonstrating the engineering feasibility and effectiveness of the proposed design and simulation models.