In this paper, we study the equilibrium valuation for currency options in a setting of the two-country Lucas-type economy. Different from the continuous model in Bakshi and Chen [1], we propose a discontinuous model with jump processes. Empirical findings reveal that the jump components in each country's money supply can be decomposed into the simultaneous co-jump component and the country-specific jump component. Each of the jump components is modeled with a Poisson process whose jump intensity follows a mean reversion stochastic process. By solving a partial integro-differential equation (PIDE), we get a closed-form solution to the PIDE for a European call currency option. The numerical results show that the derived option pricing formula is efficient for practical use. Importantly, we find that the co-jump has a significant impact on option price and implied volatility.