We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The general concept of multiferroic materials as those with strong interplay between two or more ferroic properties is first introduced. Then, particular cases of materials with coupling magnetic and polar (magnetoelectric coupling), polar and structural (electrostructural coupling), and magnetic and structural (magnetostructural coupling) degrees of freedom are discussed in more detail. The physical origin of the interplay is analysed and symmetry-based considerations are used to determine the dominant coupling terms adequate to construct extended Ginzburg–Landau models that permit the determination of cross-response to multiple fields. The last part of the chapter is devoted to study morphotropic systems and morphotropic phase boundaries that separate crystallographic phases with different polar (magnetic) properties as examples of materials with electro(magneto)-structural interplay and that are expected to show giant cross-response to electric (magnetic) and mechanical fields.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.