We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The same volume-averaging procedure used in Chapter 2 shows how to transition from the Maxwell’s equations controlling the electromagnetic fields of fundamental particles in vacuum to the continuum form of Maxwell’s equations describing the electromagnetic fields averaged over large numbers of molecules. The Maxwell stress tensor is derived for the body forces acting on the molecules. The macroscopic form of Maxwell’s equations and the associated electromagnetic fields are obtained when the frame of reference is moving with the center of mass of each collection of molecules. The laws of reversible polarization are obtained by time differentiation of the electromagnetic energy density. The law of electromigration (Ohm’s law) is obtained from a nonequilibrium thermodynamics perspective. Conditions are obtained for the neglect of the material movement in the continuum theory of electromagnetism. Electromagnetic continuity conditions are derived and used on example problems. The continuum form of Newtonian gravity is derived. Expressions for the Coriolis and centrifugal forces are derived when the frame of reference is rotating about an axis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.