We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Internet-based interventions produce comparable effectiveness rates as face-to-face therapy in treating depression. Still, more than half of patients do not respond to treatment. Machine learning (ML) methods could help to overcome these low response rates by predicting therapy outcomes on an individual level and tailoring treatment accordingly. Few studies implemented ML algorithms in internet-based depression treatment using baseline self-report data, but differing results hinder inferences on clinical practicability. This work compares algorithms using features gathered at baseline or early in treatment in their capability to predict non-response to a 6-week online program targeting depression.
Methods
Our training and test sample encompassed 1270 and 318 individuals, respectively. We trained random forest algorithms on self-report and process features gathered at baseline and after 2 weeks of treatment. Non-responders were defined as participants not fulfilling the criteria for reliable and clinically significant change on PHQ-9 post-treatment. Our benchmark models were logistic regressions trained on baseline PHQ-9 sum or PHQ-9 early change, using 100 iterations of randomly sampled 80/20 train-test-splits.
Results
Best performances were reached by our models involving early treatment characteristics (recall: 0.75–0.76; AUC: 0.71–0.77). Therapeutic alliance and early symptom change constituted the most important predictors. Models trained on baseline data were not significantly better than our benchmark.
Conclusions
Fair accuracies were only attainable by involving information from early treatment stages. In-treatment adaptation, instead of a priori selection, might constitute a more feasible approach for improving response when relying on easily accessible self-report features. Implementation trials are needed to determine clinical usefulness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.