We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Covariance structure analysis of nonnormal data is important because in practice all data are nonnormal. When applying covariance structure analysis to nonnormal data, it is generally assumed that the asymptotic covariance matrix Γ for the nonredundant terms in the sample covariance matrix S is nonsingular. It is shown this need not be the case, which raises a question of how restrictive this assumption may be and how difficult it may be to verify it. It is shown that Γ is nonsingular whenever sampling is from a nonsingular distribution, including any distribution defined by a density function. In the discrete case necessary and sufficient conditions are given for the nonsingularity of Γ, and it is shown how to demonstrate Γ is nonsingular with high probability. Thus, the nonsingularity of Γ assumption is mild and one should feel comfortable about making it. These observations also apply to the asymptotic covariance matrix Γ that arises in structural equation modeling.
The authors review various facts about copulas linking discrete distributions. They show how the possibility of ties that results from atoms in the probability distribution invalidates various familiar relations that lie at the root of copula theory in the continuous case. They highlight some of the dangers and limitations of an undiscriminating transposition of modeling and inference practices from the continuous setting into the discrete one.
We obtain a representation of an arbitrary discrete distribution with n mass points by an equiprobable mixture of r distributions, each of which has no more than a (≧2) mass points, where r is the smallest integer greater than or equal to (n – 1)/(a – 1). An application to the generation of discrete random variables on a computer is described, which has as an important special case Walker's (1977) alias method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.