We propose and analyze spectral direction splitting schemes for the incompressible Navier-Stokes equations. The schemes combine a Legendre-spectral method for the spatial discretization and a pressure-stabilization/direction splitting scheme for the temporal discretization, leading to a sequence of one-dimensional elliptic equations at each time step while preserving the same order of accuracy as the usual pressure-stabilization schemes. We prove that these schemes are unconditionally stable, and present numerical results which demonstrate the stability, accuracy, and efficiency of the proposed methods.