The direct derivation (DD) method is a technique for quantitative phase analysis (QPA). It can be characterized by the use of the total sums of scattered/diffracted intensities from individual components as the observed data. The crystal structure parameters are required when we calculate the intensities of reflections or diffraction patterns. Intensity can, however, be calculated only with the chemical composition data if it is not of individual reflections but of a total sum of diffracted/scattered intensities for that material. Furthermore, it can be given in a form of the scattered intensity per unit weight. Therefore, we can calculate the weight proportion of a component material by dividing the total sum of observed scattered/diffracted intensities by the scattered intensity per unit weight. The chemical composition data of samples under investigation are known in almost all cases at the stage of QPA. Thus, a technical problem is how to separate the observed diffraction pattern of a mixture into individual component patterns. Various pattern decomposition techniques currently available can be used for separating the pattern of a mixture. In this report, the theoretical background of the DD method and various techniques for pattern decompositions are reviewed along with the examples of applications.