We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To use a Machine Learning (ML) approach to compare Neuropsychiatric Symptoms (NPS) in participants of a longitudinal study who developed dementia and those who did not.
Design:
Mann-Whitney U and ML analysis. Nine ML algorithms were evaluated using a 10-fold stratified validation procedure. Performance metrics (accuracy, recall, F-1 score, and Cohen’s kappa) were computed for each algorithm, and graphic metrics (ROC and precision-recall curves) and features analysis were computed for the best-performing algorithm.
Setting:
Primary care health centers.
Participants:
128 participants: 78 cognitively unimpaired and 50 with MCI.
Measurements:
Diagnosis at baseline, months from the baseline assessment until the 3rd follow-up or development of dementia, gender, age, Charlson Comorbidity Index, Neuropsychiatric Inventory-Questionnaire (NPI-Q) individual items, NPI-Q total severity, and total stress score and Geriatric Depression Scale-15 items (GDS-15) total score.
Results:
30 participants developed dementia, while 98 did not. Most of the participants who developed dementia were diagnosed at baseline with amnestic multidomain MCI. The Random Forest Plot model provided the metrics that best predicted conversion to dementia (e.g. accuracy=.88, F1=.67, and Cohen’s kappa=.63). The algorithm indicated the importance of the metrics, in the following (decreasing) order: months from first assessment, age, the diagnostic group at baseline, total NPI-Q severity score, total NPI-Q stress score, and GDS-15 total score.
Conclusions:
ML is a valuable technique for detecting the risk of conversion to dementia in MCI patients. Some NPS proxies, including NPI-Q total severity score, NPI-Q total stress score, and GDS-15 total score, were deemed as the most important variables for predicting conversion, adding further support to the hypothesis that some NPS are associated with a higher risk of dementia in MCI.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.