The concept of ‘imbibitional damage’ arose when it was observed that considerable leakage of cell contents could occur when dry seed or pollen tissues are plunged directly into water. It is now common practice to imbibe dehydrated tissue slowly, to permit the re-establishment of functional membranes, prior to placing the tissue into liquid water. However, this argument may not hold if the tissue of interest is inherently desiccation-sensitive. Slow drying of desiccation-sensitive (recalcitrant) seeds or excised embryonic axes results in damage at high water contents, because it permits time for aqueous-based deleterious processes to occur. The same argument may apply if partially dried material is re-imbibed slowly, as this technique will also expose the tissue to intermediate water contents for protracted periods. This hypothesis was tested using embryos or axes from seeds of three recalcitrant species (Artocarpus heterophyllus, Podocarpus henkelii and Ekebergia capensis). Excised material was rapidly dried to water contents within the range over which viability is lost during drying, and re-imbibed either rapidly, by plunging directly into water, or slowly, by placing the material on damp filter paper or exposing it to a saturated atmosphere for several hours. Although details of the response differed among species and developmental stage, in all cases direct re-imbibition in water resulted in higher (or similar, but never lower) survival than either of the slow rehydration techniques.