Interest in reducing purchased chemical inputs to reduce production costs and avoid possible environmental damage prompted this 7-year study. Two management systems, current management practices (CMP) and reduced chemical inputs (RCI), were evaluated for four crop sequences from 1985 through 1992: continuous grain sorghum; continuous corn; a 2-year rotation of corn and double-cropped winter wheat and soybean; and a 4-year rotation of corn, winter wheat/soybean, corn, and red clover hay (changed in 1989 to a 3-year rotation of corn, red clover hay, and wheat/soybean). No-till planting and recommended rates of fertilizer and pesticides were used in the CMP system. In the RCI system, N was supplied by a crimson clover green manure crop or the red clover in the rotation. Weed control was by chisel plowing, disking, and cultivation.
Crimson clover top growth accumulated from 70 to 180 kgN/ha, red clover from 77 to 130 kg N/ha. Rotating crops increased corn yield with CMP but not with RCI. lndry years, corn yields were low (less than 3000 kg/ha), corn did not respond to fertilizer N, and yields generally were higher with CMP than with RCI. With adequate rain, yield of all RCI treatments were the same as yield in CMP continuous corn receiving no fertilizer N. Johnsongrass competition was the main reason for low yields in the RCI treatments. Soybean yields were higher with CMP in 4 years and higher with RCI one year. Wheat and grain sorghum yields were higher with CMP than with RCI. A dramatic decline in johnsongrass in sorghum was noted in 1989, and several plots remained relatively free of johnsongrass through 1992.
Management decisions made during the experiment included the degree of input reduction in RCI; whether to either end or modify unproductive treatments; whether to use newly available varieties and pesticides; whether to suspend the experiment to eliminate johnsongrass; and how to add new treatments while retaining the original treatments.