We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Smooth cubic hypersurfaces $X\subset \mathbb{P}^{5}$ (over $\mathbb{C}$) are linked to K3 surfaces via their Hodge structures, due to the work of Hassett, and via a subcategory ${\mathcal{A}}_{X}\subset \text{D}^{\text{b}}(X)$, due to the work of Kuznetsov. The relation between these two viewpoints has recently been elucidated by Addington and Thomas. In this paper, both aspects are studied further and extended to twisted K3 surfaces, which in particular allows us to determine the group of autoequivalences of ${\mathcal{A}}_{X}$ for the general cubic fourfold. Furthermore, we prove finiteness results for cubics with equivalent K3 categories and study periods of cubics in terms of generalized K3 surfaces.
Allcock, Carlson and Toledo defined a period map for cubic threefolds which takes values in a ball quotient of dimension 10. A theorem of Voisin implies that this is an open embedding. We determine its image and show that on the algebraic level this amounts to identification of the algebra of $\operatorname{SL}(5,\mathbb{C})$-invariant polynomials on the representation space $\operatorname{Sym}^3(\mathbb{C}^5)^*$ with an explicitly described algebra of meromorphic automorphic forms on the complex 10-ball.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.