We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Saddle dolomite is a common product of late-stage diagenesis and hydrothermal activity. It has been suggested that during growth Ca enrichment occurs towards crystal edges leading to a lattice expansion relative to face centres. However, backscatter scanning electron microscopy of eight samples has revealed that, instead of edge associated Ca enrichment, saddle dolomites have a series of edge associated Mg enriched wedges, between 5 and 20 µm thick and 300 µm long. Wedge geometry implies development of extra lattice layers at edges relative to face centres. It is suggested that the wedges develop during rapid, transport-controlled, crystal growth. The wedges possibly reflect a switching from continuous growth across the face to edge-nucleated growth as the boundary layer solution becomes progressively depleted. Continuous growth might be reinstigated through convective turnover of the boundary layer presenting fresh solution to the growing crystal.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.