We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Clinical implementation of risk calculator models in the clinical high-risk for psychosis (CHR-P) population has been hindered by heterogeneous risk distributions across study cohorts which could be attributed to pre-ascertainment illness progression. To examine this, we tested whether the duration of attenuated psychotic symptom (APS) worsening prior to baseline moderated performance of the North American prodrome longitudinal study 2 (NAPLS2) risk calculator. We also examined whether rates of cortical thinning, another marker of illness progression, bolstered clinical prediction models.
Methods
Participants from both the NAPLS2 and NAPLS3 samples were classified as either ‘long’ or ‘short’ symptom duration based on time since APS increase prior to baseline. The NAPLS2 risk calculator model was applied to each of these groups. In a subset of NAPLS3 participants who completed follow-up magnetic resonance imaging scans, change in cortical thickness was combined with the individual risk score to predict conversion to psychosis.
Results
The risk calculator models achieved similar performance across the combined NAPLS2/NAPLS3 sample [area under the curve (AUC) = 0.69], the long duration group (AUC = 0.71), and the short duration group (AUC = 0.71). The shorter duration group was younger and had higher baseline APS than the longer duration group. The addition of cortical thinning improved the prediction of conversion significantly for the short duration group (AUC = 0.84), with a moderate improvement in prediction for the longer duration group (AUC = 0.78).
Conclusions
These results suggest that early illness progression differs among CHR-P patients, is detectable with both clinical and neuroimaging measures, and could play an essential role in the prediction of clinical outcomes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.