We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Personal protective equipment (PPE) are essential for medical personnel responding to hazardous materials (HAZMAT) incidents. However, their impermeable design causes increased physiological strain and reduced thermoregulation, limiting work times and causing heat-related illnesses (HRI). Use of wearable cooling devices slow heat accumulation and have been shown to reduce thermal and cardiovascular strain in such situations.
Methods:
This was a prospective clinical evaluation to determine the tolerability and effectiveness of the CarbonCool cooling system – a half-body cooling vest – in participants undergoing a HAZMAT decontamination recertification. Physiological measurements (heart rate [HR], weight, temperature, and blood pressure) and participant feedback were obtained. The main outcome of interest was participants’ tolerability of the cooling vest.
Results:
A total of 23 healthy participants were recruited, with 10 randomized to the intervention group and 13 in the control group. Mean age in the control and intervention group was 35.5 years old (SD = 7.8) and 30.0 years old (SD = 6.2), respectively. Qualitative feedback obtained from participants regarding safety, mobility, and cooling efficacy was largely positive. Difference of before-after temperature and HR was 0.3°C (SD = 0.8) and 11.5bpm (SD = 13.6) in the control group compared to 0.0°C (SD = 0.5) and 0.0bpm (SD = 6.4) for the intervention group.
Conclusion:
This clinical evaluation showed that the CarbonCool cooling vest is safe and tolerable in participants wearing PPE. Further trials with sample size powered to detect physiological outcomes are needed to assess the effect of the cooling vest on a subject’s endurance to heat stress.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.