Very general multilinear models, called CANDELINC, and a practical least-squares fitting procedure, also called CANDELINC, are described for data consisting of a many-way array. The models incorporate the possibility of general linear constraints, which turn out to have substantial practical value in some applications, by permitting better prediction and understanding. Description of the model, and proof of a theorem which greatly simplifies the least-squares fitting process, is given first for the case involving two-way data and a bilinear model. Model and proof are then extended to the case of N-way data and an N-linear model for general N. The case N = 3 covers many significant applications. Two applications are described: one of two-way CANDELINC, and the other of CANDELINC used as a constrained version of INDSCAL. Possible additional applications are discussed.