To date, implantation is the rate-limiting step for the success of in vitro fertilization (IVF) treatment. Accumulating evidence suggests that immune cells contribute to embryo implantation, and several therapeutic approaches have been proposed for the treatment of recurrent implantation failure (RIF). Endometrial immune modulation with autologous activated peripheral blood mononuclear cells (PBMCs) is one of the most widely used protocols. However, the effect of intrauterine insemination of mixed paternal and maternal-activated PBMCs has not yet been attempted and studied. The aim of our study is to test the effect of the addition of paternal lymphocytes on the implantation rate in RIF patients. Mononuclear cells were isolated from the peripheral blood of 98 RIF patients and cultured for 72 h before insemination into the endometrial cavity 48 h before embryo transfer. Our patients were divided into 4 groups according to the type and number of PBMCs inseminations. Our study shows that activated PBMCs promoted clinical pregnancy rates (CPR) in all groups. Moreover, we found that the groups injected with more than 2 million cells showed a better clinical outcome and, more interestingly, patients inseminated with both paternal and maternal activated PBMCs showed the highest CPR, reaching 47.2%, in addition to the highest implantation rate 31. 2% and the live birth rate 41.39%. Our work demonstrates the importance of administering a large number of activated PBMCs with the addition of paternal activated PBMCs to immunomodulate the endometrium for the success of in vitro fertilization in RIF patients.