The objective for this study was to determine if POST-directed applications of flumioxazin reduce fruit yield for chile pepper produced on coarse- and fine-textured soils irrigated by furrow. This objective was addressed with a multiyear (2015, 2016, 2017) field study that compared flumioxazin effects on fruit yield against a commercial standard (POST-directed carfentrazone) and the absence of a POST-directed herbicide. The field study occurred at two university research farms that differed in soil texture. On fine-textured soil, treatments included the no POST–directed herbicide control and the following four POST-directed herbicides applied to raised beds: (1) flumioxazin at 107 g ai ha–1 applied 4 wk after crop thinning, (2) carfentrazone at 35 g ai ha–1 applied 4 wk after crop thinning, (3) flumioxazin at 70 g ai ha–1 applied 4 and 6 wk after crop thinning, (4) carfentrazone at 35 g ai ha–1 applied 4 and 6 wk after crop thinning. On coarse-textured soil, treatments included the no POST–directed herbicide control and the following three POST-directed herbicides applied 4 wk after crop thinning: (1) flumioxazin at 107 g ai ha–1 applied to raised beds, (2) flumioxazin at 107 g ai ha–1 applied to furrows, (3) carfentrazone at 35 g ai ha–1 applied to raised beds. On fine-textured soil, treatment did not affect fruit yield. On coarse-textured soil, flumioxazin applied to furrows did not reduce fruit yield, but flumioxazin on raised beds reduced fruit yield of some cultivars in 2015 and 2017. Year-to-year variability in both flumioxazin-induced yield loss and soil characteristics suggested that chile pepper sensitivity to flumioxazin was negatively associated with soil organic matter content. In a follow-up greenhouse study, soil organic matter lessened flumioxazin-induced crop injury. In general, this study indicates that recommendations for POST-directed flumioxazin in New Mexico chile pepper will need to be soil-type specific.