Inorganic carbon fixation, usually mediated by photosynthetic microorganisms, is considered to form the base of the food chain in aquatic ecosystems. In high-latitude lakes, lack of sunlight owing to seasonal solar radiation limits the activity of photosynthetic plankton during the polar winter, causing respiration-driven demand for carbon to exceed supply. Here, we show that inorganic carbon fixation in the dark, driven by organisms that gain energy from chemical reactions rather than sunlight (chemolithoautotrophs), provides a significant influx of fixed carbon to two permanently ice-covered lakes (Fryxell and East Bonney). Fryxell, which has higher biomass per unit volume of water, had higher rates of inorganic dark carbon fixation by chemolithoautotrophs than East Bonney (trophogenic zone average 1.0 µg C l−1 d−1vs 0.08 µg C l−1 d−1, respectively). This contribution from dark carbon fixation was partly due to the activity of ammonia oxidizers, which are present in both lakes. Despite the potential importance of new carbon input by chemolithoautotrophic activity, both lakes remain net heterotrophic, with respiratory demand for carbon exceeding supply. Dark carbon fixation increased the ratio of new carbon supply to respiratory demand from 0.16 to 0.47 in Fryxell, and from 0.14 to 0.22 in East Bonney.