A survey was carried out in eight goat dairy farms, a total of 71 individual Garganica goat milk samples were collected for genomic DNA extraction. Casein alleles and haplotype frequencies of Garganica population were estimated. Individual milks were also analysed for chemical composition, rheological properties, and protein profile. The strong A* allele of CSN1S1 was predominant in the population investigated, the weak allele F of CSN1S1 showed a relatively high frequency and the null alleles N and 01 were first observed in this breed. At CSN1S2 locus the strong A* allele was the most frequent, followed by the F allele and the null allele. The strong A* allele was predominant at CSN2 locus, and relatively high incidence of null allele 0 was observed. CSN3 locus was monomorphic for B* allele. The exact test of sample differentiation based on haplotype frequencies discriminate the farms into two groups characterized by the highest frequency of strong (S-CSN1S1) or weak (W-CSN1S1) alleles at CSN1S1. Protein and casein contents were higher in the group characterized by strong allele than in the group with weak allele at CSN1S1. The 2D electrophoresis technique was performed to screen goat casein variability at the protein level and to evaluate global casein genotype (αs1, αs2, β and κ-CN). Gels displayed the protein profile associated with casein genotype, and demonstrated differences in the protein expression deriving from interactions between loci. The variability of goat casein loci in Garganica goat breed could be exploited to differentiate the population on the basis of milk utilization and could represent a strategy to preserve the genotype of this autochthonous breed.