The performance of 273 Hereford calves from lines previously selected for lean growth rate (LGR) or lean food conversion efficiency (LFCR), on a concentrate diet, was evaluated on a grassland diet over a period of 3 years. Both bull and heifer calves were tested, and each year the performance test ran from the 1st week of May (average age of 233 days) until the 1st week of October. Carcass lean content was predicted from body weight and ultrasonic backfat depth, and lean gain was calculated from the product of live-weight gain and predicted carcass lean content. The LGR line was superior to the control (C) line for live-weight gain on test, lean gain on test and lean gain from birth until the end of test. The LFCR line performed similarly to the C line for live-weight gain on test and lean gain on test, but was inferior for total lean gain. For lean gain on test, the proportional differences between the lines were similar to those predicted from parental breeding values for LGR, but they were smaller for total lean gain. The lines did not differ significantly for either fat depth or predicted carcass lean content.
Heritabilities were high for all growth traits, e.g. 0·52 (s.e. 0·17), 0·54 (s.e. 0·17) and 0·59 (s.e. 0·17) for live-weight gain on test, lean gain on test and total lean gain, but lower for fat depth and carcass lean content, 0·25 (s.e. 0·17) and 0·14 (s.e. 0·16), respectively. Genetic correlations with LGR, measured on a concentrate diet, were 0·57 for lean gain on test and 0·56 for total lean gain. If only males were considered, these correlations rose to 0·80 and 0·70, respectively. Coheritabilities between the two environments for lean growth were close to 0·3. It is concluded that although there is some evidence for genotype × environment and genotype × sex interactions, selection for lean growth on a concentrate regimen will still be effective in improving grassland performance.