Let $\mathbf{A}$ be a density matrix in ${{\mathbb{M}}_{m}}\,\otimes \,{{\mathbb{M}}_{n}}$. Audenaert [J. Math. Phys. 48(2007) 083507] proved an inequality for Schatten $p$-norms:
$$1\,+\,||\mathbf{A}|{{|}_{p}}\,\ge \,{{\left\| \text{T}{{\text{r}}_{1}}\,\mathbf{A} \right\|}_{p}}\,+\,||\text{T}{{\text{r}}_{2}}\,\mathbf{A}|{{|}_{p}},$$
where $\text{T}{{\text{r}}_{1}}$ and $\text{T}{{\text{r}}_{2}}$ stand for the first and second partial trace, respectively. As an analogue of his result, we prove a determinantal inequality
$$1\,+\,\det \,\mathbf{A}\,\ge \,\det {{\left( \text{T}{{\text{r}}_{1}}\mathbf{A} \right)}^{m}}\,+\,\det {{\left( \text{T}{{\text{r}}_{2}}\mathbf{A} \right)}^{2}}.$$