We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study presents the design and realization of a dual-port multiple-input–multiple-output (MIMO) filtering antenna system. The device shows good response in the frequency rage 1 (4.1 to 7.125 GHZ) frequency band, which handles most of the cellular mobile communication traffic. First, the single element ultra-wideband (UWB) filtenna is designed by combining a UWB antenna and a band-reject filter (BRF) where the antenna works in the frequency range from 1 to 11 GHz and the BRF is rejecting the frequency range of 3–3.42 GHz with 3.2 GHz as its resonant frequency. Finally, the proposed two-port MIMO filtenna combines two single element UWB filtennas in antiparallel manner which shows impedance bandwidth from 2.59 to 7.1 GHz with a band notch from 3 to 3.42 GHz. The structure is built on cost-efficient FR4 substrate (εr = 4.4, tanδ = 0.02) of dimensions 0.68${{\boldsymbol{\lambda }}_{\boldsymbol{c}}}$×0.27${{\boldsymbol{\lambda }}_{\boldsymbol{c}}}$×0.01${{\boldsymbol{\lambda }}_{\boldsymbol{c}}}$ (mm3), which is compact in size and utilizes a defected ground structure for further miniaturization. The proposed design is simulated using Ansys HFSS software, and after fabrication, it is measured, and the output shows good results for the proposed application. The designed antenna system is suitable for fifth-generation (5G) wideband systems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.