Mature and immature axes of Theobroma cacao (cocoa) seeds tolerated desiccation under a rapid-drying regime to critical water contents of 1.0 and 1.7 g g-1 dw, respectively. These critical water contents corresponded to water contents below which activities of free radical-scavenging enzymes (ascorbate peroxidase, peroxidase and superoxide dismutase) decreased rapidly during desiccation. The decline in axis viability below the critical water content was correlated with sharp increases in lipid peroxidation and cellular leakage. Cotyledon tissues were more desiccation-tolerant than axes, with a low critical water content of 0.24 g g–1dw. Desiccation sensitivity in cotyledon tissues was also correlated with the decrease in superoxide dismutase activity and increased lipid peroxidation products. However, in the cotyledons, no ascorbate peroxidase activity was detected at any water content, and peroxidase activity was gradually reduced as desiccation proceeded. Cocoa embryonic axes contained large amounts of sucrose, raffinose and stachyose but only traces of reducing monosaccharides. Desiccation sensitivity of recalcitrant cocoa axes did not appear to be due to the lack of sugar-related protective mechanisms during desiccation, and it was more likely related to the decrease of enzymic protection against desiccation-induced oxidative stresses.