We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain some results on approximate solutions of the generalised linear functional equation $\sum _{i=1}^{m}L_{i}f(\sum _{j=1}^{n}a_{ij}x_{j})=0$ for functions mapping a normed space into a normed space. We show that, under suitable assumptions, the approximate solutions are in fact exact solutions. The theorems correspond to and complement recent results on the hyperstability of generalised linear functional equations.
In this article, we have introduced a Taylor collocation method, which is based on collocation method for solving fractional Riccati differential equation. The fractional derivatives are described in the Caputo sense. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional Riccati differential equation and then substituting their matrix forms into the equation. Using collocation points, the systems of nonlinear algebraic equation is derived. We further solve the system of nonlinear algebraic equation using Maple 13 and thus obtain the coefficients of the generalized Taylor expansion. Illustrative examples are presented to demonstrate the effectiveness of the proposed method.
In this paper, an analysis of the aluminum reflector mesh panels for the Five-hundred meter Aperture Spherical Telescope (FAST) is described. The study concentrates on one element of the reflector surface with the shape of a triangle. For the analysis, the panel is modelled as a mesh of cables so that it can be treated as continuous. It is demonstrated that the results so obtained are reasonable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.