We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent neuroimaging studies have demonstrated that the heterogeneous antidepressant responsiveness in patients with major depressive disorder (MDD) is associated with diverse resting-state functional brain network (rsFBN) topology; however, only limited studies have explored the rsFBN using electroencephalography (EEG). In this study, we aimed to identify EEG-derived rsFBN-based biomarkers to predict pharmacotherapeutic responsiveness.
Methods
The resting-state EEG signals were acquired for demography-matched three groups: 98 patients with treatment-refractory MDD (trMDD), 269 those with good-responding MDD (grMDD), and 131 healthy controls (HCs). The source-level rsFBN was constructed using 31 sources as nodes and beta-band power envelope correlation (PEC) as edges. The degree centrality (DC) and clustering coefficients (CCs) were calculated for various sparsity levels. Network-based statistic and one-way analysis of variance models were employed for comparing PECs and network indices, respectively. The multiple comparisons were controlled by the false discovery rate.
Results
Patients with trMDD were characterized by the altered dorsal attention network and salience network. Specifically, they exhibited hypoconnection between eye fields and right parietal regions (p = 0.0088), decreased DC in the right supramarginal gyrus (q = 0.0057), and decreased CC in the reward circuit (qs < 0.05). On the other hand, both MDD groups shared increased DC but decreased CC in the posterior cingulate cortex.
Conclusions
We confirmed that network topology was more severely deteriorated in patients with trMDD, particularly for the attention-regulatory networks. Our findings suggested that the altered rsFBN topologies could serve as potential pathologically interpretable biomarkers for predicting antidepressant responsiveness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.