The deformable wing structure can change its aerodynamic shape according to the change of flight mission and flight environment, so as to obtain better lift-drag, stability and control characteristics, which is considered as one of the future research directions of aviation technology. Considering the current technology maturity and reliability, a gradient corrugated fin is designed to realise the bending deformation of the wing. The structure of the skin is optimised to keep the skin smooth during deformation. In addition, a progressive push and pull rod is proposed to drive the wing deformation, and the fluid-structure interaction simulation is carried out for the wing deformation. At the same time, the changes of wing aerodynamic characteristics under different angles of leading and trailing edges and different push rod action schemes are analysed. Finally, a dry wind tunnel simulation test of the designed progressive flexible variable bending wing is carried out. The results of fluid-structure interaction simulation and dry wind tunnel test show that the progressive flexible variable bending wing proposed in this paper has a simple and reliable structure and remarkable deformation effect. It has advantages in increasing lift and reducing drag, ensuring high lift-drag ratio and providing wing trim moment. The deformable wing dry wind tunnel test platform designed by this method is structurally reliable, easy to operate, and can accurately reflect the influence of wing deformation on its aerodynamic force, which provides a verification means for the development of the design method and the design of practical aircraft in the future.