We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As green spaces, lawns are often thought to capture carbon from the atmosphere. However, once mowing, fertlising and irrigation are taken into account, we show that they become carbon sources, at least in the long run. Converting unused urban and rural lawn and grassland to treescapes can make a substantial contribution to reducing greenhouse gas emissions and increasing carbon absorption from the atmosphere. However, it is imperative for governing bodies to put in place appropriate policies and incentives in order to achieve this.
Technical summary
Mown grass or lawn is a ubiquitous form of vegetation in human-dominated landscapes and it is often claimed to perform an ecosystem service by sequestering soil carbon. If lawn maintenance is included, however, we show that lawns become net carbon emitters. We estimate that globally, if one-third of mown grass in cities was returned to treescapes, 310–1630 million tonnes of carbon could be absorbed from the atmosphere, and up to 43 tonnes of carbon equivalent per hectare of emissions could be avoided over a two-decade time span. We therefore propose that local and central governments introduce policies to incentivise and/or regulate the conversion of underutilised grass into treescapes.
Social media summary
If unused lawns were planted with trees, a gigaton of carbon could be removed from the atmosphere over two decades.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.