We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The most widespread – and arguably influential – concern regarding solar geoengineering has been that it would harmfully displace emissions abatement. Notably, there was a similar objection to adaptation, although one no longer hears it. Moral hazard and risk compensation offer imperfect analogies, and the empirical evidence for their magnitudes is mixed. Public opinion studies that ask people how they would respond to solar geoengineering consistently do not imply abatement displacement and often point toward the reverse, in which solar geoengineering increases support for abatement. The chapter identifies four genuine hazards regarding the relationships among the responses to climate change. Notably, all four are challenges to governance in general and are not limited to climate change policy. These imply some, albeit limited, policy options to reduce abatement displacement. Linkages between international abatement and solar geoengineering policies have some potential. I suggest that the abatement displacement concern is widespread for reasons largely unrelated to reducing climate change and its negative impacts, but instead is grounded in political coalitions and worldviews
Solar geoengineering is being considered and researched as a potential response to anthropogenic climate change. After exploring the causes and risks of climate change and other responses to it, this chapter describes solar geoengineering’s history and proposed methods, including stratospheric aerosol injection, marine cloud brightening, and cirrus cloud thinning. The current evidence regarding their potential capabilities, costs, and technical feasibility is presented. Evidence from models and natural analogs indicates that a moderate deployment of solar geoengineering would globally reduce climate change. It also appears to be technically feasible, rapid in its effects, inexpensive in its direct deployment costs, and reversible. Among solar geoengineering’s physical risks are imperfect compensation of climatic changes and consequent residual climatic anomalies, delayed recovery of stratospheric ozone, and irresolvable uncertainty. Social challenges include decision-making regarding deployment, problematic uni- or minilateral implementation, strained international relations, displacement of emissions abatement, biased future decision-making, and disagreement regarding ethics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.