Coccidia are protozoal parasites which compromise mucosal integrity of the intestine, potentiating poultry morbidity. The host's Zn status influences the course of infection. Therefore, two experiments were designed to determine how supplemental Zn regimens impacted jejunal and caecal immune status and Zn transporter expression. Coccivac®-B was administered weekly at ten times the recommended dose as a mild coccidial challenge (10CV). Zn was provided through a basal diet, supplemental zinc sulfate (ZnSO4), or a supplemental 1:1 blend of ZnSO4 and Availa®-Zn (Blend). Mucosal jejunum (Expt 1) and caecal tonsils (Expt 2) were evaluated for intracellular Zn concentrations and phagocytic capacity. Messenger expression of Zn transporters ZnT5, ZnT7, Zip9 and Zip13 were investigated to determine Zn trafficking. With 10CV, phagocytic capacity was decreased in jejunal cells by 2 %. In the caecal tonsils, however, phagocytic capacity increased with challenge, with the magnitude of increase being more pronounced with higher dietary Zn (10CV × Zn interaction; P= 0·04). Intracellular Zn within caecal tonsils was found significantly reduced with 10CV (27 %, P= 0·0001). 10CV also resulted in an overall increase in the ratio of Zip:ZnT transporters. With the exception of Zip13 transporter expression, dietary Zn source had little impact on any of the measured cellular parameters. Thus, intestinal mucosal tissues had reductions in intracellular free Zn during coccidial challenge, which was coupled with an upregulation of measured Zip transporters. This suggests that under coccidial challenge, intestinal cells attempt to compensate for the drop in intracellular Zn.