Both prosthetic and robotic research communities have tended to focus on hand/gripper development. However, the wrist unit could enable higher mobility of the end effector and thus more efficient and dexterous manipulation. The current state of the art in both prosthetic and robotic wrists is reviewed systematically, mainly concerning their kinematic structures and resultant capabilities. Further, by considering the biomechanical advantages of the human wrist, an evaluation including the mobility, stability, output capability, load capacity and flexibility of the current artificial wrists is conducted. With the pentagonal capability radar charts, the major limitations and challenges in the current development of artificial wrists are derived. This paper hence provides some useful insights for better robotic wrist design and development.