A number of approaches for discretizing partial differential equations with random dataare based on generalized polynomial chaos expansions of random variables. These constitutegeneralizations of the polynomial chaos expansions introduced by Norbert Wiener toexpansions in polynomials orthogonal with respect to non-Gaussian probability measures. Wepresent conditions on such measures which imply mean-square convergence of generalizedpolynomial chaos expansions to the correct limit and complement these with illustrativeexamples.