Changes in the altitudes of glacier snowlines (ELAs) and the altitudes of montane vegetation belts (VBAs) measure Quaternary climatic change. An accepted ‘correction’ to such changes by deducting the amount of contemporary sea level fall is wrong, since the air displaced by the ice sheets approximately fills the space left by the falling sea level and so there is no overall downward movement of the troposphere. This also causes a reduced cooling at the lowered sea level relative to that at the former inter-glacial sea level, about 1°C at the Las Glacial Maximum, which reduces the discrepancies previously noted by others between terrestrial and marine estimates of sea-level cooling. The change in temperature is indicated by the product of the ELA or VBA lowering and the environmental lapse rate (ELR). Prior estimates of ΔELA (−900 ± 135 m) and ELR (−6° ± 0.1°C km−1) would indicate a cooling of −5.4°C at interglacial sea level and −4.4°C at glacial sea level, although glacial-period ELRs are not known reliably. Established ELA corrections for local epeirogenic uplift or subsidence are appropriate.