This paper offers a designed Integrated Navigation System that will permit vessels to transit safely through the Suez Canal avoiding collision and grounding in all weather environments instead of being directed to anchor, thus keeping the Canal open at all times for ship transits. The Suez Canal Integrated Navigation System (SCINS) includes Differential Global Positioning System (DGPS), Suez Canal LORAN-C system, and Vessel Traffic Management System (VTMS). The combination of DGPS and LORAN-C systems would provide real-time DGPS corrections that could be used to calibrate the Loran fix; this can be achieved by means of portable integrated DGPS/LORAN-C sets installed aboard the vessels. The addition of VTMS provides significant capability for preserving system accuracy during periods of GPS outages. Due to the interface between LORAN-C and VTMS systems, the SCINS will be able to solve the problem of targets that cannot be tracked by VTMS radars in the shadow areas behind the new bridges along the Canal. The SCINS automates position fixing in real-time, offers a designed algorithm to return the ship to the middle of the Canal and computes the cross-track error (XTE) and the ship squat. Kalman Filter design and system level performance predictions for the SCINS are briefly described. Simulation results show that the SCINS offers superior performance and better position accuracy than current integrated systems.