Nerve growth factor (NGF) is a prototype member of the neurotrophins family and has important functions in the maintenance of viability and proliferation of neuronal and non-neuronal cells, such as certain ovarian cells. The present review highlights the role of NGF and its receptors on ovarian follicle development. NGF initiates its multiple actions through binding to two classes of receptors: the high affinity receptor tyrosine kinase A (TrkA) and the low-affinity receptor p75. Different intracytoplasmic signalling pathways may be activated through binding to NGF due to variation in the receptors. The TrkA receptor activates predominantly phosphatidylinositol-3-kinase (PI3K) and mitogenic activated protein kinase (MAPK) to promote cell survival and proliferation. The activation of the phospholipase type Cγ (PLCγ) pathway, which results in the production of diacylglycerol (DAG) and inositol triphosphate (IP3), culminates in the release of calcium from the intracytoplasmic cellular stocks. However, the details of activation through p75 receptor are less well known. Expression of NGF and its receptors is localized in ovarian cells (oocyte, granulosa, theca and interstitial cells) from several species, which suggests that NGF and its receptors may regulate some ovarian functions such as follicular survival or development. Thus, the use of NGF in culture medium for ovarian follicles may be of critical importance for researchers who want to promote follicular development in vitro in the future.