Designing vibrating systems is challenging due to component interaction. One approach to reduce the resulting complexity is top-down design where requirements on components are formulated such that the overall system achieves the design goal. Previous work showed how to derive quantitative and solution-neutral requirements on components of a vibrating system, expressed as permissible ranges of impedance. This work adapts the methodology to a practical use case and provides a concrete technical solution: A hammer drill that can cause white finger syndromes to users is equipped with an appropriate vibration absorber. The hammer drill is represented by a lumped mass model and validated using experimental data of a reference design. Solution-neutral and quantitative component requirements on the overall dynamics of the vibration absorber expressed by impedance are derived. They provide a clear target for the component design. A vibration absorber in form of a Tuned Mass Damper (TMD) is designed accordingly. The final design is validated experimentally and shown to reduce the vibration by 47%.