A topological space X is said to be weakly-Lindelöf if and only if every open cover of X has a countable sub-family with dense union. We know that products of two Lindelöf spaces need not be weakly-Lindelöf. In this paper we obtain non-trivial sufficient conditions on small sub-products to ensure the producitivity of the property weakly-Lindelöf with respect to arbitrary products.