We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a novel method for generating three-dimensional optimal trajectories for a vehicle or body that moves forward at a constant speed and steers in both horizontal and vertical directions. The vehicle's dynamics limit the body-frame pitch and yaw rates; additionally, the climb and decent angles of the vehicle are also bounded. Given the above constraints, the path planning problem is solved geometrically by building upon the two-dimensional Dubins curves and then Pontryagin's Maximum Principle is used to validate that the proposed solution lies within the family of candidate time-optimal trajectories. Finally, given the severe boundedness constraints on the vertical motion of the system, the robustness of the proposed path planning method is validated by naturally extending it to remain applicable to high-altitude final configurations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.