Voltage-sensitive dye imaging (VDI) of cortical activation patterns generated by electrical stimulation of thalamocortical afferents axons at different frequencies was studied, in vitro, using mouse brain slices. The study demonstrated that thalamocortical afferent axons stimulation could follow frequencies as high as 120 Hz without marked reduction. By contrast the power spectral density amplitude ratio in cortical layer 4 demonstrated a rapidly sigmoidal reduction at frequencies above 60 Hz. Similar findings were obtained with direct cortical afferent axons stimulation that obviated possible interactions at thalamic level. As pre-synaptic afferent field potentials, simultaneously recorded with the VDI at cortical level, followed higher stimulation frequency, it is concluded that cortical activity reduction is secondary to synaptic transmission failure. This interpretation agrees with the result from deep-brain stimulation (DBS) in humans in which high-frequency stimulation produces comparable therapeutic results, as does stereotaxic brain lesioning.