We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tuberous sclerosis complex (TSC) is a rare genetic disorder that commonly leads to drug-resistant epilepsy in affected patients. This study aimed to determine whether the underlying genetic mutation (TSC1 vs. TSC2) predicts seizure outcomes following surgical treatments for epilepsy.
Methods:
We retrospectively assessed TSC patients using the TSC Natural History Database core registry. Data review focused on outcomes in patients treated with surgical resection or vagus nerve stimulation.
Results:
A total of 42 patients with a TSC1 mutation, and 145 patients with a TSC2 mutation, were identified. We observed a distinct clinical phenotype: children with TSC2 mutations tended to be diagnosed with TSC at a younger age than those with a TSC1 mutation (p < 0.001), were more likely to have infantile spasms (p < 0.001), and to get to surgery at a later age (p = 0.003). Among this TSC2 cohort, seizure control following resective epilepsy surgery was achieved in less than half (47%) the study sample. In contrast, patients with TSC1 mutations tended to have more favorable postsurgical outcomes; seizure control was achieved in 66% of this group.
Conclusion:
TSC2 mutations result in a more severe epilepsy phenotype that is also less responsive to resective surgery. It is important to consider this distinct clinical disposition when counseling families preoperatively with respect to seizure freedom. Larger samples are required to better characterize the independent effects of genetic mutation, infantile spasms, and duration of epilepsy as they relate to seizure control following resective or neuromodulatory epilepsy surgery.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.