We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The existence and nonexistence of semi-trivial or coexistence steady-state solutions of one-dimensional competition models in an unstirred chemostat are studied by establishing new results on systems of Hammerstein integral equations via the classical fixed point index theory. We provide three ranges for the two parameters involved in the competition models under which the models have no semi-trivial and coexistence steady-state solutions or have semi-trivial steady-state solutions but no coexistence steady-state solutions or have semi-trivial or coexistence steady-state solutions. It remains open to find the largest range for the two parameters under which the models have only coexistence steady-state solutions. We apply the new results on systems of Hammerstein integral equations to obtain results on steady-state solutions of systems of reaction-diffusion equations with general separated boundary conditions. Such type of results have not been studied in the literature. However, these results are very useful for studying the competition models in an unstirred chemostat. Our results on Hammerstein integral equations and differential equations generalize and improve some previous results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.