The sulphur microbial diet (SMD), a dietary pattern associated with forty-three sulphur-metabolising bacteria, may influence gut microbiota composition and contribute to ageing process through gut-produced hydrogen sulfide (H2S). We aimed to explore the association between SMD and biological age (BA) acceleration, using the cross-sectional study that included 71 579 individuals from the UK Biobank. The SMD score was calculated by multiplying β-coefficients by corresponding serving sizes and summing them, based on dietary data collected using the Oxford WebQ, a 24-hour dietary assessment tool. BA was assessed using Klemerae–Doubal (KDM) and PhenoAge methods. The difference between BA and chronological age refers to the age acceleration (AgeAccel), termed ‘KDMAccel’ and ‘PhenoAgeAccel’. Generalised linear regression was performed. Mediation analyses were used to investigate underlying mediators including BMI and serum aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio. Following adjustment for multiple variables, a positive association was observed between consuming a dietary pattern with a higher SMD score and both KDMAccel (βQ4 v. Q1 = 0·35, 95 % CI = 0·27, 0·44, P < 0·001) and PhenoAgeAccel (βQ4 v. Q1 = 0·32, 95 % CI = 0·23, 0·41, P < 0·001). Each 1-SD increase in SMD score was positively associated with the acceleration of BA by 7·90 % for KDMAccel (P < 0·001) and 7·80 % for PhenoAgeAccel (P < 0·001). BMI and AST/ALT mediated the association. The stratified analysis revealed stronger accelerated ageing impacts in males and smokers. Our study indicated a higher SMD score is associated with elevated markers of biological ageing, supporting the potential utility of gut microbiota-targeted dietary interventions in attenuating the ageing process.