We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, a subspace fitting method is proposed to update, in the time domain, thefinite element model of a rotating machine. The procedure is achieved by minimizing anerror norm, leading to the comparison between experimental and theoretical observabilitymatrices. Experimental observability matrix is obtained through a MOESP subspaceidentification algorithm, by projecting the output signal onto some appropriate subspaces,resulting in a cancellation of input excitations and noises. The theoretical observabilitymatrix is obtained from modal parameters of a finite element model of the structure. Theminimization procedure is carried out through a Gauss-Newton algorithm. The method isapplied to determine the foundation stiffness of an experimental rotating machine subjectto a random noise.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.