We consider Stavskaya’s process, which is a two-state probabilistic cellular automaton defined on a one-dimensional lattice. The state of any vertex depends only on itself and on the state of its right-adjacent neighbour. This process was one of the first multicomponent systems with local interaction for which the existence of a kind of phase transition has been rigorously proved. However, the exact localisation of its critical value remains as an open problem. We provide a new lower bound for the critical value.