Developing adequate ship domain models may significantly benefit vessel navigation safety. In essence, navigation safety is collectively affected by the navigable waterway condition, the size and shape of the ship, and operators' skills. The existing ship domains mainly use constant values for the model input parameters, making them incapable of handling site-specific conditions. This study proposes dynamic ship domain models that take into consideration navigable waterway conditions, ship behaviours, ship types and sizes, and operators' skills in a holistic manner. Specifically, the conditions of restricted waterways are classified into navigating along the channel, crossing the channel, joining another flow and turning. The ship types considered include ships that transport non-hazardous goods and Liquid Natural Gas (LNG) ships that are in need of additional security zones. A computational experiment is conducted for model application using data on water channel design and ship traffic volumes related to navigating along the channel, joining another flow and turning. Comparisons of results obtained between the proposed dynamic models with real ship traffic counts reveal that the proposed models could achieve a higher level of accuracy in estimating the capacity of restricted water channels. It therefore could potentially deliver safety enhancements of waterway transportation.