This work employs the Brownian motion model in which observations are taken sequentially. The objective is to detect a two-sided change in the constant drift by means of a stopping rule. As a performance measure, an extended Lorden criterion is used. The goal is to minimize the worst-case detection delay subject to a constraint in the frequency of false alarms. In a companion paper, attention is drawn to a first category of 2-CUSUM rules for which the harmonic mean rule holds. It is further seen that a special class of 2-CUSUM stopping rules within this category, called drift equalizer rules, perform strictly better than non-equalizer rules, according to this specific performance measure.