We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work we analyze a class of 2 × 2 Pólya-Eggenberger urn models with ball replacement matrix and c = pa with . We determine limiting distributions by obtaining a precise recursive description of the moments of the considered random variables, which allows us to deduce asymptotic expansions of the moments. In particular, we obtain limiting distributions for the pills problem a = c = d = 1, originally proposed by Knuth and McCarthy. Furthermore, we also obtain limiting distributions for the well-known sampling without replacement urn, a = d = 1 and c = 0, and generalizations of it to arbitrary and c = 0. Moreover, we obtain a recursive description of the moment sequence for a generalized problem.
We consider the problem of finding an optimal betting strategy for a house-banked casino card game that is played for several coups before reshuffling. The sampling without replacement makes it possible to take advantage of the changes in the expected value as the deck is depleted, making large bets when the game is advantageous. Using such a strategy, which is easy to implement, is known as card counting. We consider the case of a large number of decks, making an approximation to continuous time possible. A limit law of the return process is found and the optimal card counting strategy is derived. This continuous-time strategy is shown to be a natural analog of the discrete-time strategy where the so-called effects of removal are replaced by the infinitesimal generator of the card process.
A simplified proof of Thorp and Walden's fundamental theorem of card counting is presented, and a corresponding central limit theorem is established. Results are applied to the casino game of trente et quarante, which was studied by Poisson and De Morgan.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.